If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2+10z+1=0
a = 1; b = 10; c = +1;
Δ = b2-4ac
Δ = 102-4·1·1
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-4\sqrt{6}}{2*1}=\frac{-10-4\sqrt{6}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+4\sqrt{6}}{2*1}=\frac{-10+4\sqrt{6}}{2} $
| 5+m=20 | | 4x^2-2=120 | | 11x-13=27+13 | | 3(4a+9)-10(a-6)=1 | | r-9=21 | | x(x^2-x)^1/3+4(x^2-x)^4/3=0 | | 20+50x=20x+4 | | 25n=15 | | 8r−3r=20 | | 4(4s+7)=220 | | 4x-158=130+12x | | 25-+410=0.08s | | -9x-67=-14x+38 | | (2x-1)^2=120 | | 9x+6=-6x-4 | | -93-x=-9x+43 | | 2x-21=39 | | 2b−-5b−9b=-14 | | 1.5x-1.2=1.8 | | 8+30x=673 | | 9x+6=-6-4 | | -25+14x=11x+38 | | 4p/9=7/3 | | 6x-192=105-5x | | 15d-13d=14 | | 48/y+9=42/2y | | -x-89=191+9x | | 79/40-0.1625=x | | -6x-220=121+5x | | r1.25=0.75+r1 | | -33-10x=-6x+71 | | -33-10x=6x+72 |